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Abstract

This report summarizes our work on methods for developing high-assurance digital systems. We
present an approach for understanding and evaluating trust issues in digital systems, and for us-
ing computer-checked proofs as a means for realizing this approach. We describe the theoretical
background for programming with proofs based on the Curry-Howard correspondence, connect-
ing the field of logic and proof theory to programs. We then describe a series of case studies,
intended to demonstrate how this approach might be adopted in practice. In particular, our stud-
ies elucidate some of the challenges that arise with this style of certified programming, including
induction principles, generic programming, termination requirements, and reasoning over infinite
state spaces.
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Chapter 1

Introduction

In this report we describe our research into methods for developing high-assurance computer pro-
grams. High-assurance programs are nominally different from regular programs only in their em-
phasis on correctness – they are expected to offer a very strong guarantee that they meet some
detailed specification. The intent is that such programs may be used in high-consequence applica-
tions and systems where typical software would be deemed too unreliable, e.g., digital components
for transportation or weapons systems where software errors could result in enormous damage and
even loss of life.

Although there are numerous potential methodologies for developing high-assurance programs,
in this research project we have focused on the most flexible and powerful approach: certified
programming. This method augments traditional programming with the ability to treat programs
as mathematical objects, allowing the programmer to write proofs about the code – that it has some
property, implements some protocol, never acts in a particular malign fashion – in short, that it
meets some specification.

The certified programming approach is not without its drawbacks. In particular, it is quite
different in practice from traditional programming, requiring a fairly sophisticated knowledge of
logic and mathematics, and necessitating a limited and unconventional programming language
syntax and semantics. Other approaches, such as automated model checking, are likely easier to
incorporate into current practice. Nevertheless, certified programming has the distinct advantage
of imposing the fewest possible constraints on the programs to be verified, as well as offering the
most sophisticated available logic and proof formalisms. In this project we attempted to thread this
needle, with our goal being to reconcile the power and complexity of certified programming with
real-world goals of Sandia engineering.
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Chapter 2

How to Trust a Computer Program

In this chapter, we will explore the question of what it would mean, in principle, to “trust” a com-
puter program. We leave aside the issues involved in trusting hardware, restricting our attention to
software and assuming that the hardware it runs on is providing a reliable and robust abstraction
of primitive digital computation.

Contemporary software engineering practices will not be able to provide trust for non-trivial
programs, because there is simply no way to verify that a program meets its specification. Func-
tional testing is the best technique in widespread use today, but testing can only verify a tiny subset
of possible program inputs. To build truly trusted programs, we need to be able to ask questions
such as: will a given program ever be able to transition into an undesirable state? Will it always
eventually achieve some desirable state? To establish this kind of trust for programs, we must
move beyond testing towards formal proofs of program correctness. Articulating and definitively
answering these kinds of questions is the goal of formal verification. The following table sum-
marizes verification techniques and the corresponding everyday notions of trust they provide for
digital systems:

Verification Method Mode of Trust
Doing nothing Intuition
Testing Gathering evidence
Formal verification Irrefutable proof

To make this idea concrete, let us consider how testing works. Given a program f , which
accepts inputs from some set I and, assuming it terminates, produces outputs in some set O. A
test is a pair (x,r) ∈ I×O and we judge the test to have passed if and only if we can demonstrate
that f x = r. For observably deterministic programs, the evidence is easy to construct: simply run
f with input x and compare the output to r. The methodology is straightforward to implement, but
it restricts predicates to this form f x = r where x and r are constants.

To express complex requirements, including notions like “never,” “always,” or “eventually,”
we need a more generalized predicate logic. In particular, we require unconstrained predicate
expressions including quantifiers like “for all” and “there exists.” Unfortunately, checking the
truth of these expressions is more difficult in general than with the constrained form required for
tests. In a test, running the program provides the evidence that the tested input meets its expected
output. In the generalized setting, the evidence must be provided in other ways. We will explore
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this problem further in the following chapters. For now, however, the crucial point is this: To
establish trust for programs, proof is as good as it gets.

The subsequent chapters of this report will describe how formal verification, that is, construct-
ing proof of program correctness with respect to rich specifications, can be done in practice for
digital software systems. In this chapter, we pause to examine the inherent limits of any approach
to software verification, including formal verification. This will help us understand the limits of
what we can hope to achieve, and thus how to measure and evaluate claims of trustability.

2.1 Formal Verification

In a typical program designed for high assurance, we have the following elements:

1. Requirements: Usually, an English-language informal description of what the program must
do and not do, in terms of its real-world interactions.

2. A specification: Typically also English language decorated with semi-formal notation, de-
scribing what the program must do and not do, reflecting the requirements but in terms more
easily interpreted in a digital system.

3. The program: program code, written in some programming language.

4. Software platform: including the programming language implementation, runtime, software
libraries, operating system, and hardware.

Here, we are mainly concerned with verifying that the program really does as the specification
directs: this problem is called “program verification.” There are other aspects of the problem we
might want to verify as well, e.g., that the requirements are accurate and complete, but those con-
cerns are outside the scope of program verification. (Note that verifying the software platform is
not necessarily outside the scope of program verification, as discussed below). In the typical case,
described above, testing is employed but can provide only limited and partial evidence establish-
ing program verification – limited in that it is restricted in the form of the questions that can be
asked, and partial in that it is infeasible to test every possible state. We would prefer to prove the
correctness of the system, and this is the topic of most of the rest of this report. Let us assume that
we can provide a proof that the program meets the specification. What else must we trust, in order
to trust the system as a whole? We must establish trust for these elements: the proof checker, the
programming language and platform, and the specification.

2.2 How to Trust A Proof Checker

If we are able to prove that a program meets a specification, we must be able to trust the proof! This
can be accomplished with a proof checker that is able to verify that each deductive step undertaken
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in a given proof is logically valid, for some underlying logical system. As we will see, for program
verification there are reasons to prefer intuitionistic logical systems, where proofs are provided
constructively.

Fundamentally, the proof checker is the one component of the system which cannot be verified
by proof – this would imply a circular dependency. The proof checker must be designed and
implemented very carefully, using traditional software development techniques, and cannot be
proven correct. It must be trusted.

This unfortunate situation can be mitigated to some extent. The proof checker implementation
can (and should) be kept extremely small and simple, and thus, easier to verify by traditional
methods. Typically foundational logical systems can be shown to be sound (i.e., false statements
cannot be proven) using pen-and-paper proof techniques, because the logics themselves are tiny
and highly orthogonal.

2.3 How to Trust A Programming Language

Trusting a programming language also implies trusting everything “below” it, i.e., the language
runtime, operating system, and so on. Trust that the programming language provides a faithful
implementation of its intended semantics implies trust in this entire stack.

Language Implementation

The key insight is that every level of the language implementation, from the operating system to
the language runtime to the compiler, can, in principle, be proven correct with respect to some
specification. For programming languages, the notion of a “specification” is especially precise: it
is exactly the notion of formal semantics [5, 14]. Realizing this, the user’s application is simply
another “layer” to be verified, depending on the verification of the levels below it, and possibly
supporting levels above it.

Hardware is a special care, and here the problem becomes more difficult. In principle, you can
verify a hardware design just like a software design, all the way down to the gate level, or even a
physical model (this is the new and challenging field of hybrid verification [6]). In practice, how-
ever, hardware manufacture is typically out of the user’s direct control, and thus trusting hardware
presents special challenges [9].

Even leaving aside hardware, there is clearly a need for a trusted software stack, including
the operating system and programming language implementations. Perhaps surprisingly, there
already exists a fairly good start in this direction. Today, engineers can make use of both verified
microkernel [8] and a verified C compiler [10] as a foundational layer upon which to build their
own verified applications.
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Side effects

Today, most programs are written in languages that expose a more-or-less unconstrained model
of the machine on your desk. So, a program can potentially make the machine on your desk do
almost anything it is capable of, including interacting with the physical world via the network
or user interface, reading or writing data to local storage, and so on. Programming platforms
go through some considerable trouble to limit these effects, but the limits are imposed at a level
above the language itself. This makes writing complete specifications extraordinarily difficult: the
designer must consider all the potential side effects (including combinations and interleavings of
effects) and describe a policy to circumscribe them.

From a programming language point of view, side effects include things like I/O, but also
concurrency, non-local control (e.g., exceptions), and mutable state. One approach to managing
them is to start with a model of “pure” computation, and add specific side effects only in the parts
of the program that require them, on an “as-needed” basis. Although it may sound esoteric, this
approach has been pursued in the literature [16] and even in practice [7], and has been shown to be
practical for a wide variety of applications.

Even a “pure” programming model typically has potential side effects. First, the program
might not terminate. This is a non-trivial issue, as non-termination can be a security vulnerability
(consider a program in weapon, which goes into an infinite loop and prevents it from detonating).
As we will see in the following chapters, one solution is to require proof of termination. This
implies that the programming model is no longer Turing-complete, but this does not seem to be a
serious limitation in practice, at least for high-consequence areas of interest to Sandia.

Second, different programs that meet exactly the same specification may have very different
computational efficiency. Consider a specification for a sorting algorithm, which says (informally)
that given a list of integers, the program will produce the same list of integers in order. Both
a merge sort and a bubble sort will meet the specification, yet the latter will run exponentially
slower in general. In general the problem might be even more complex to reason about: different
algorithms might be preferred for different inputs depending on a variety of factors. The solution
here is to incorporate some notion of performance into the specification itself, but in practice this
can be quite complex and costly [3]. This topic is an active area of interest for the authors, and a
topic of future research.

2.4 How to Trust A Specification

Unfortunately, there is a need to trust a different set of requirements and specifications for every
program. The specification ultimately arises from the needs and requirements of the human agen-
cies that dictate its creation, and these motivations are fundamentally difficult to access or reason
about.

Tools can help, however. In particular, they can be used to check that a specification is con-
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sistent: that all terms and cases are completely defined; that required conditions are not mutually
contradictory, and so on.
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Chapter 3

Foundations for Certified Programming

In this chapter we present an introduction to the concepts and notation of certified programming.
We start by examining Gentzen’s system of natural deduction, a parsimonious proof framework
wherein the usual logical connectives are defined via inference alone. We then expand on this
foundation, first enriching the notation with contextual rules, and then adding explicit proof terms.
We will see that the proof terms in this system correspond to λ terms from functional programming,
giving rise to the Curry-Howard correspondence. We conclude with an example proof in our
system and show how it may be presented in multiple ways: as an inference tree, as a prose-style
logical argument, and as a λ -term, with no semantic difference in any case. For more information
on the material in this section, see [13].

3.1 Natural Deduction

The system of natural deduction is a framework for defining logics or, equivalently, the meaning
of logical connectives. In contrast to other formalisms, this system attempts to mimic a “natural”
process of logical reasoning. The fundamental idea is that of a judgment based on evidence. For
example, we might make the judgment “the sky is blue” based on visual evidence or that “’A
implies A’ is true for any proposition A” based on some derivation. Schematic derivations or rules
are usually written in a two-dimensional notation. We write:

A B
C

to mean “if we can make judgments A and B we can make judgment C.”

Derivations may be hypothetical, that is, dependent on other judgments. For example, we might
say A is true under the hypothesis that B is true, where B may be used in the derivation of A. This
is written:
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B true
...

A true

u

The label u identifies this particular instance of the hypothesis, ensuring that it is not used outside
its scope.

In this system each of the usual logical connectives may be defined without reference to any
other, which is convenient for meta-analysis. As we will see, it also makes plain the connection
between logic and programming.

Connectives

A logical connective is defined by two kinds of rules: the introduction rules specify how the con-
nective may be inferred, while the elimination rules tell us what we can infer from the connective.
We present introduction and elimination rules for three connectives: conjunction, implication, and
disjunction. In these notes we omit the other usual logical connectives, but they can be defined in
a similar way.

Conjunction

The introduction rule for conjunction, which we call CONJ-I, is straightforward: it derives A∧B
from A and B.

A true B true
A∧B true

CONJ-I

There are two elimination rules for conjunction. Elimination on the left allows us to derive A
from A∧B, while elimination on the right derives B from A∧B.

A∧B true
A true

CONJ-EL
A∧B true

B true
CONJ-ER

Implication

We can derive an implication A⊃ B if B is true supposing hypothesis A. The introduction rule uses
the hypothetical form for judgments, so it is parameterized by a label u identifying the hypothesis.

16



A true
...

B true

u

A⊃ B true
IMPL-Iu

The elimination rule derives the consequence of the implication given the implication itself and
its condition.

A⊃ B true A true
B true

IMPL-E

Disjunction

We can infer a disjunction from either its left or right clause.

A true
A∨B true

DISJ-IL
B true

A∨B true
DISJ-IR

The elimination rule for disjunction is more interesting. If we can infer C under either hypoth-
esis A or B, then we can infer C from A∨B.

A∨B true

A true
...

C true

u
B true

...
C true

v

C true
DISJ-Eu,v

Example

The following derivation constitutes a proof of the tautology (A∧A ⊃C)∨ (B∧B ⊃C) ⊃C, for
any A, B, and C.

17



(A∧A⊃C)∨ (B∧B⊃C)
u

A∧A⊃C
v

A
CONJ-EL

A∧A⊃C
v

A⊃C
CONJ-ER

C
IMPL-E

B∧B⊃C
w

B
CONJ-EL

B∧B⊃C
w

B⊃C
CONJ-ER

C
IMPL-E

C
DISJ-Ev,w

(A∧A⊃C)∨ (B∧B⊃C)⊃C
IMPL-Iu

Localized Hypotheses

It is often notationally convenient to annotate each judgment with the hypotheses available to it,
effectively moving hypotheses from a global to a local scope. For this, we use a context. We write:

Γ,u : A ` B

to mean B under a (possibly empty) set of hypotheses Γ, extended with the hypothesis A labeled u.
Localized versions of our rules are as follows.

Γ ` A Γ ` B
Γ ` A∧B

CONJ-I
Γ ` A∧B

Γ ` A
CONJ-EL

Γ ` A∧B
Γ ` B

CONJ-ER

Γ,u : A ` B
Γ ` A⊃ B

IMPL-I
Γ ` A⊃ B Γ ` A

Γ ` B
IMPL-E

Γ ` A
Γ ` A∨B

DISJ-IL
Γ ` B

Γ ` A∨B
DISJ-IR

Γ ` A∨B Γ,u : A `C Γ,w : B `C
Γ `C

DISJ-E

In this schema, we must add a rule for explicit derivation of assumptions:

Γ,u : A ` A

18



3.2 Proofs as Programs

The basic judgment in natural deduction is the derivability of a formula A, written ` A. Since
we are interested in the derivations themselves as objects of study, it is convenient to have them
explicit in our notation. We write Γ `M : A to say that M is a proof term for A under hypotheses Γ.

Interestingly, there happens to be a strong correspondence between proof terms in natural de-
duction and programs in the λ calculus, allowing us to view judgments as types, and proofs as
programs. This is often called the Curry-Howard correspondence. We therefore borrow the nota-
tion of λ calculus for our rules, as follows.

Γ `M : A Γ ` N : B
Γ ` 〈M,N〉 : A∧B

PAIR
Γ `M : A∧B
Γ ` fst M : A

FST
Γ ` N : A∧B
Γ ` snd N : B

SND

Γ,u : A `M : B
Γ ` λ (u : A).M : A⊃ B

ABS
Γ `M : A⊃ B Γ ` N : A

Γ `M N : B
APP

Γ `M : A
Γ ` inl M : A∨B

INL
Γ ` N : B

Γ ` inr N : A∨B
INR

Γ `M : A∨B Γ,u : A ` N1 : C Γ,w : B ` N2 : C
Γ ` (case M of inl u⇒ N1 | inr w⇒ N2) : C

CASE

Now we can rewrite our example derivation from Section 3.1 as a program in the λ -calculus.
Recall that the example proved the tautology (A∧A⊃C)∨ (B∧B⊃C)⊃C, for any A, B, and C.

λu.case u of inl v⇒ (snd v)(fst v) | inr w⇒ (snd w)(fst w)

You should be able to convince yourself that this program has the right type, based on the above
rules.

Versus traditional proofs

For comparison, here is the derivation as a step-by-step, prose-style proof.
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1. We wish to prove (A∧A⊃C)∨ (B∧B⊃C)⊃C, for any A, B, and C.

2. By IMPL-I, we know that (A∧ A ⊃ C)∨ (B∧ B ⊃ C) ⊃ C if we can derive C from the
assumption (A∧A⊃C)∨ (B∧B⊃C). Let us call this assumption u.

3. By DISJ-E, we can derive C from assumption u if we can derive C assuming A∧A⊃C and
C assuming B∧B⊃C. Let us call the first assumption v and the second assumption w.

4. By IMPL-E, we can derive C from assumption v if we can derive A from assumption v and
A⊃C from assumption v.

5. By CONJ-EL, we can derive A from assumption v.

6. By CONJ-ER, we can derive A⊃C from assumption v.

7. By IMPL-E, we can derive C from assumption w if we can derive B from assumption w and
B⊃C from assumption w.

8. By CONJ-EL, we can derive B from assumption w.

9. By CONJ-ER, we can derive B⊃C from assumption w.

10. QED.
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Chapter 4

Coq as Certified Programming Language

Based on the connection between formal proofs and programs in the λ calculus, we can write
three normally disconnected entities, programs, specifications, and proofs of correctness connect-
ing the two, in a single program calculus. We will need a slightly richer system than simply-typed
λ calculus, although the basic ideas are essentially the same. In this project we have focused
on the Calculus of Constructions[4] and its extensions[2], and in particular its realization as a
programming language and semi-automated theorem prover in Coq [12].

Learning Coq, necessary for understanding the examples and case in this chapter, small under-
taking – for this, we recommend[3, 15, 1].

4.1 Insertion Sort

In this simple but complete example, we describe how to write an certified insertion sorting algo-
rithm. The program will take a list of natural number as input and produce a list containing the
same numbers, sorted from least to greatest. The program listing is as follows.

Require Import Arith.
Require Import List.
Import ListNotations.

Inductive sorted : list nat→ Prop :=
| empty sorted : sorted []
| single sorted : ∀ a, sorted [a]
| cons sorted : ∀ a b l, sorted (b::l)→ a ≤ b→ sorted (a::b::l).

Fixpoint insert x l :=
match l with
| []⇒ [x]
| y::ys⇒ if leb x y then x :: y :: ys else y :: (insert x ys)
end.

Fixpoint insertion sort l :=
match l with
| []⇒ []
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| x::xs⇒ insert x (insertion sort xs)
end.

Lemma leb true : ∀ n m, leb n m = true→ n ≤ m. Proof.
apply leb iff. Qed.

Lemma leb false : ∀ n m, leb n m = false→ m ≤ n. Proof.
intros. apply le Sn le. apply leb iff conv. assumption. Qed.

Hint Resolve leb true.
Hint Resolve leb false.
Hint Constructors sorted.

Lemma insert fact :
∀ x l, sorted l→ sorted (insert x l).

Proof.
intros x l E.
induction E; simpl; auto.
destruct (leb x a) eqn:Hxa; auto.

simpl in IHE.
destruct (leb x a) eqn:Hxa; auto.
destruct (leb x b) eqn:Hxb; auto.

Qed.

Theorem insertion sort correct :
∀ l, sorted (insertion sort l).

Proof.
induction l; auto.
destruct l; simpl; auto.
apply insert fact. auto.

Qed.

Extraction Language Ocaml.
Set Extraction Optimize.
Extract Inductive bool⇒ ”bool” [”true” ”false”].
Extract Inductive nat⇒ ”int” [”0” ”succ”].
Extract Inductive list⇒ ”list” [”[]” ”( :: )”].
Extract Constant leb⇒ ”( ¡= )”.
Extraction ”insert.ml” insertion sort.

Let us consider a few of the relevant definitions to see how this program works, and what
exactly has been certified. The sorted predicate says that a list can be sorted under three conditions,
defined recursively:

1. An empty list is sorted;

2. A list with a single element is sorted;
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3. Given some list l and natural number b, if the list b :: l (b appended to the front of l) is sorted,
and there exists some natural number a such that a≤ b, then the list a :: b :: l is sorted.

The definition insertion sort is the actual program, defined recursively in the usual way. The
definitions of leb true, leq false, and insert fact, as well as the various Hint directives, are used
later in the finaly correctness proof.

The theorem insertion sort correct combines both the specification of correctness and the
proof (for a more complicated example, we could have put them in separate definitions). It states
that for all lists l of natural numbers, we can provide evidence that the result of applying inser-
tion sort to l will be sorted, in the sense of the sorted predicate described earlier. The lines between
Proof and Qed are tactics which construct a λ expression serving as a proof term, which certifies
that the statement is correct. The proof term is simply more Coq code, and its correctness as a
proof is guaranteed by Coq’s type checker.

Finally, the Extraction directives at the end of the listing tell Coq how to “compile” this
program listing into executable source code. In this case, the program is extracted to the OCaml
programming language [11], and from there it can be used as a library routine in other programs.

4.2 Programming with Generic Proofs

Reusability is even more important in certified programming than usual. Since programs must be
proven correct, and proofs are potentially labor-intensive, being able to reuse proofs on general
program structures has a high cost-saving potential.

In this example, we explored how this idea might work in Coq. We focused on a very general
and common programming pattern: monoids. Monoids are algebraic structures (i.e., a data type)
equipped with a binary operator and a special element called the identity. The operator must be
shown to be associative, and the identity element must act as its name suggests, from both the left
and the right. The key idea is that any datatype that satisfies these conditions is a monoid, and in
many cases knowing a datatype has the monoid structure is sufficient. For example, a program that
performs a summation of a list of integers can be generalized so that it operates on any monoid.
Monoids have important applications in a diverse range of tasks, such as logging systems, parsers,
and parallel programming [17].

Here is the program listing for our monoid definition.

Require Import Utf8.
Require Import Arith.
Require Import List.
Import ListNotations.

Module Type Monoid.
Parameter t : Set.

23



Parameter empty : t.
Parameter app : t t t.
Infix ”” := app (at level 50).
Axiom app assoc : x y z, x (y z) = (x y) z.
Axiom app empty l : x, empty x = x.
Axiom app empty r : x, x = x empty.
End Monoid.

Module MonoidFold (Import M : Monoid).
Fixpoint fold (xs : list t) : t :=
match xs with
| []⇒ empty
| x::xs’⇒ x (fold xs’)
end.

End MonoidFold.

First, we define a module type for monoids, which encapsulates the underlying set t, the identity
element (here called empty) and the binary operator (?). Also, at the same syntactic level, we
specify that a monoid must contain proofs of the essential properties: associativity, and left- and
right-identity. These are best thought of as proof obligations – proofs which must be given in order
to show that a structure is indeed a monoid.

The next part of the listing provides a definition of a fold operation which works for any
monoid. The fold combines a list of monoid elements, using the monoid operator for the given
instance. Notice how the operation is parametrized by a particular monoid, and refers only to the
monoid structure to implement the operation.

The next listing demonstrates how to specialize this definition to natural numbers under addi-
tion.

Module NatPlusMonoid : Monoid
with Definition t := nat
with Definition app := plus
with Definition empty := 0.

Definition t := nat.
Definition empty := 0.
Definition app := plus.
Definition app assoc := plus assoc.
Definition app empty l := plus O n.
Definition app empty r := plus n O.
End NatPlusMonoid.

Module monplus := MonoidFold (NatPlusMonoid).
Compute monplus.fold [1;2;3;4;5].

The module NatPlusMonoid defines a monoid instance for natural numbers under addition,
with 0 as the identity element. The proofs are drawn from the natural number library routines
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provided with Coq (it is important to note that there is nothing special about those routines – we
could have written them ourselves). The last lines demonstrate how to specialize our previously-
defined fold operation with this particular monoid, and evaluates an example calculation.

The next listing is similar, but defines a monoid instance for natural numbers under multiplica-
tion, with 1 as the identity.

Module NatMultMonoid : Monoid
with Definition t := nat
with Definition app := mult
with Definition empty := 1.

Definition t := nat.
Definition empty := 1.
Definition app := mult.
Definition app assoc := mult assoc.
Definition app empty l := mult 1 l.
Theorem app empty r : x,

x = x × 1.
Proof.
intros. symmetry. apply mult 1 r.

Qed.
End NatMultMonoid.

Module monmult := MonoidFold (NatMultMonoid).
Compute monmult.fold [1;2;3;4;5].

The next monoid instance is more interesting. The usual option type, which is parametrized by
an underlying type A, can be given a monoid definition if the type A has a monoid instance itself,
i.e., option is a monoid homomorphism. To define the monoid instance for option, we parametrize
it with another monoid type.

Module OptionMonoid (M : Monoid) : Monoid.
Definition t := option M.t.
Definition empty := None : t.
Definition app mx my :=
match mx,my with
| None, ⇒ my
| ,None⇒ mx
| Some x,Some y⇒ Some (M.app x y)
end.

Theorem app assoc : x y z, app x (app y z) = app (app x y) z.
Proof.
intros. destruct x,y,z; auto.
simpl. rewrite M.app assoc. auto.

Qed.

Theorem app empty l : x, app None x = x.
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Proof. auto. Qed.

Theorem app empty r : x, x = app x None.
Proof. intros. destruct x; auto. Qed.
End OptionMonoid.

Notice how, again, only the monoid structure is referenced in this definition, even though we
are defining a fairly complex family of operations. This example also demonstrates how the proofs
of the underlying monoid are used to prove the correctness for the option instance.

4.3 Induction Principles

Coq provides a “free” induction principle for every user-defined datatype. However, the generated
induction schema is not always the one that the programmer wants or needs. Our study on writing
a summation code (see Section 4.4) was one such instance. The induction principle that Coq
generates for Z is:

P(0) =⇒ (∀x ∈ Z+,P(x)) =⇒ (∀x ∈ Z+,P(−x)) =⇒ ∀x ∈ Z,P(x)

This principle is derived directly from the definition, which is defined inductively starting with
0 as a base case. Notice, however, that the choice of 0 as the base case is arbitrary – any element of
Z will work. We can define and prove this new induction principle, which starts from any integer,
in Coq as follows.

Require Import ZArith.

Open Local Scope Z.

Lemma pred pos 0 (P : Z→ Prop) :
(∀ x : Z, P x→ P (Z.pred x))→
∀ p, P (Z.pos p)→ P 0.

Proof.
intro Hp.
apply (Pos.peano ind (fun x⇒ P (Z.pos x)→ P 0)).
intros. rewrite← Z.pred succ; auto.

intros p IHp H. apply IHp.
rewrite Pos2Z.inj succ in H. apply Hp in H. rewrite Z.pred succ in H.
assumption.

Qed.

Lemma neg succ pred : ∀ p,
Z.neg (Pos.succ p) = Z.pred (Z.neg p).

Proof.
intros.
rewrite← Pos.add 1 r.
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rewrite← Pos2Z.add neg neg.
rewrite← Z.sub 1 r.
reflexivity.

Qed.

Lemma succ neg 0 (P : Z → Prop) :
(∀ x : Z, P x→ P (Z.succ x))→
∀ p, P (Z.neg p)→ P 0.

Proof.
intro Hs.
apply (Pos.peano ind (fun x⇒ P (Z.neg x)→ P 0)).
intros. apply Hs in H. assumption.

intros p IHp H. apply IHp.
rewrite neg succ pred in H. apply Hs in H. rewrite Z.succ pred in H.
assumption.

Qed.

Theorem Z ex peano ind (P : Z → Prop) :
(∃ x, P x)→
(∀ x, P x→ P (Z.succ x))→
(∀ x, P x→ P (Z.pred x))→
∀ z, P z.

Proof.
intros Hx Hs Hp z. inversion Hx. clear Hx.
apply Z.peano ind; try assumption.
destruct x eqn:Hc; try assumption; subst.
apply pred pos 0 with p; auto.
apply succ neg 0 with p; auto.

Qed.

4.4 Functional Programming

In this case study, we explored writing and verifying a summation function in Coq, along the lines
of the mathematical notion of summation. That is, we sought to provide a definition and proof of
correctness for an algorithm that computes, for all i, j ∈ Z and f ∈ Z→ R,

j

∑
n=i

f (n)

The complete definition of the algorithm was designed to be quite general, which entailed a
greater proof burden than we originally imagined. Nonetheless, the complete development was
straightforward.
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First, we defined sequences of natural numbers. The function seqn0 takes a natural number n
and produces a list of natural numbers [0,1, . . . ,(n−1)] (and if n is zero the result is the empty list,
if n is one, the list is [0]). The list data structure we use is provided by Coq’s standard library; we
use it here for convenience.

Require Export List.
Export ListNotations.

Definition seqn0 (n : nat) : list nat :=
let seqn0’ := fix seqn0’ m :=
match m with

| O⇒ []
| S m’⇒ m’ :: seqn0’ m’
end in

rev (seqn0’ n).

Lemma seqn0 fwd step : ∀ n,
0 ¡ n→
seqn0 n = 0 :: (map S (seqn0 (pred n))).

Proof.
intros. destruct n; try solve [inversion H]; clear H; simpl.
induction n; auto.
unfold seqn0 in *. simpl in *.
rewrite map app. rewrite IHn. reflexivity.

Qed.

Lemma seqn0 bwd step : ∀ n,
0 ¡ n→
seqn0 n = seqn0 (pred n) ++ [pred n].

Proof.
intros n H. destruct n; try (solve [ inversion H ]).
unfold seqn0. reflexivity.

Qed.

Theorem seqn0 length : ∀ n,
length (seqn0 n) = n.

Proof.
induction n; auto.
rewrite seqn0 fwd step; try intuition.
simpl. rewrite map length. rewrite IHn.
reflexivity.

Qed.

The proofs about this code should be fairly intuitive. The lemmas seqn0 fwd step and seqn0 bwd step
are just the left and right recursive expansion rules, while seqn0 length proves that the length of
the list computed by seqn0n is n itself. These facts are not very interesting on their own but will
be useful later.
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The next definition, seqn, extends lists of natural numbers to lists of integers, with parameters
for both the starting and ending index. If the start index is less than the end, the list will be empty.

Require Export SeqnNat.
Require Import ZArith.
Open Local Scope Z.

Definition seqn (a b : Z) : list Z :=
let n := Z.to nat (b - a + 1) in
let ns := seqn0 n in

map (fun x⇒ (Z.of nat x) + a) ns.

Lemma seqn length : ∀ a b,
length (seqn a b) = Z.to nat (b - a + 1).

Proof.
intros. unfold seqn.
rewrite map length. rewrite seqn0 length.
reflexivity.

Qed.

Lemma seqn one : ∀ a,
seqn a a = [a].

Proof.
intros. unfold seqn.
replace (a - a + 1) with (1) by ring.
reflexivity.

Qed.

Lemma seqn fwd step : ∀ a b,
a ≤ b→ seqn a b = [a] ++ (seqn (a + 1) b).

Proof.
intros. unfold seqn.
rewrite seqn0 fwd step. simpl. rewrite map map. f equal.
replace (pred (Z.to nat (b - a + 1))) with (Z.to nat (b - (a + 1) + 1)).
apply map ext; (intros; rewrite Nat2Z.inj succ; ring).
rewrite← Z2Nat.inj pred; f equal; rewrite← Z.sub 1 r; ring.
rewrite Z.add 1 r. rewrite Z2Nat.inj succ; intuition.

Qed.

Lemma seqn bwd step : ∀ a b,
a ≤ b→ seqn a b = seqn a (b - 1) ++ [b].

Proof.
intros. unfold seqn.
rewrite seqn0 bwd step by

(rewrite Z.add 1 r; rewrite Z2Nat.inj succ; intuition).
rewrite← Z2Nat.inj pred. rewrite← Z.sub 1 r.
replace (b - a + 1 - 1) with (b - 1 - a + 1) by ring.
rewrite map app; simpl.
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rewrite Z2Nat.id; intuition.
replace (b - 1 - a + 1 + a) with (b) by ring.
reflexivity.

Qed.

As with seqn0, we prove a few utility lemmas, such as that the length of seqnab will be b−a+
1. Note that Coq forces us to convert explicitly from Z to N; otherwise, the proofs would not pass
the typechecker. This also forces us to deal with the case where b− a+ 1 < 0, in which case the
length of the result will be zero, not a negative number.

Now we can finally define our summation algorithm and its proof of correctness. First, look at
the definition of sumf, along with some utility lemmas.

Require Import SeqnZ.
Require Import Zind.
Require Import Reals.

Open Local Scope Z.

Definition sumf (a b : Z) (f : Z → R) : R :=
let zs := seqn a b in

let rs := map f zs in
fold left Rplus rs 0%R.

Theorem sumf one : ∀ f a,
sumf a a f = f a.

Proof.
intros. unfold sumf.
rewrite seqn one. simpl.
intuition.

Qed.

Theorem sumf first : ∀ f a b,
a ≤ b→
sumf a b f = (f a + sumf (a + 1) b f )%R.

Proof.
Admitted.

Theorem sumf last : ∀ f a b,
a ≤ b→
sumf a b f = (sumf a (b - 1) f + f b)%R.

Proof.
intros. unfold sumf.
rewrite seqn bwd step; auto. simpl.
rewrite map app. simpl.
rewrite fold left app. simpl.
reflexivity.

Qed.
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The algorithm is straightforward: we generate the appropriate list of integers using seqn, then
map the given function f over the list, and then finally fold the resulting list of reals using the real
addition operator.

Next, we must prove that this algorithm really does implement a summation. But what do
we mean by a summation? One definition, very similar to what you would find in mathematics
textbook, defines summation like so:

a

∑
n=a

f (n) = f (a)

b

∑
n=a

f (n) = f (b)+
b−1

∑
n=a

f (n), for b > a

Notice that this definition is undefined when b < a. For our specification we leave this case
undefined as well, although we could have insisted that in this case the result be zero (this is what
our algorithm does), or that this case be explicitly ruled out with a proof about the calling context.
This last case is more interesting, and we employed a version of it in [6]; see that paper for details.

Here is the specification above, translated into Coq, along with a proof that our algorithm meets
the specification.

Inductive is sum (f : Z→ R) : Z→ Z → R→ Prop :=
| is sum base : ∀ a,

is sum f a a (f a)
| is sum step : ∀ a b x y, a ¡ b→

is sum f a (b - 1) x→
y = (x + f b)%R→
is sum f a b y.

Lemma is sum last : ∀ f a b x,
a ¡ b→
is sum f a b (x + f b)→ is sum f a (b - 1) x.

Proof.
intros f a b y Hc H.
inversion H; subst.

exfalso. intuition.
replace y with x; try apply Rplus eq reg r with (f b); auto.

Qed.

Theorem sumf correct : ∀ a b f,
a ≤ b→
is sum f a b (sumf a b f ).

Proof.
intros. generalize dependent b.
apply (Z ex peano ind (fun b⇒ a ≤ b→ is sum f a b (sumf a b f ))).
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∃ a. intros. rewrite sumf one. constructor.

intros. rename x into b.
destruct (a ?= Z.succ b) eqn:Hc.

rewrite Z.compare eq iff in Hc.
subst. rewrite sumf one. constructor.

rewrite Z.compare lt iff in Hc.
apply is sum step with (x := sumf a b f ); auto.

replace (Z.succ b - 1) with b by ring.
apply H. intuition.

rewrite sumf last; auto.
replace (Z.succ b - 1) with b by ring.
reflexivity.

rewrite Z.compare gt iff in Hc.
exfalso. intuition.

intros.
apply is sum last; try intuition.
rewrite← Z.sub 1 r.
rewrite← sumf last; try intuition.

Qed.

Notice how the correctness proof relies on previous lemmas. This is a common pattern in
certified programming, where proofs are built up gradually in a way that is analogous to how
programs are typically built up from smaller procedures. When you think about proofs in terms of
the Curry-Howard correspondence, this analogy is unsurprising.

4.5 Reasoning On Infinite States

Programs are often designed to operate over very large numbers of states. For example, a pro-
gram that keeps track of just three variables, each taking up one word in a 64-bit architecture, can
transition a priori to 2192 possible states. As noted in the previous chapter, this state space explo-
sion very quickly outpaces the capacity of test-driven or simulation-based verification methods. In
these cases, we may turn to proof-based verification, such as has been discussed in this chapter.
Perhaps surprisingly, the proofs are often easier if we consider very large numbers, such as 264 to
be effectively infinite. In this section, we illustrate this idea with a case study.

First, we set up some simple machinery for modeling state machines in Coq, along with a
helper lemma.

Require Export List.
Export ListNotations.

Fixpoint recognize {S X : Type} (f : S→ X→ S) l s :=
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match l with
| []⇒ s
| x :: l’⇒ recognize f l’ (f s x)
end.

Lemma recognize app :
∀ (X S : Type) (l1 l2 : list X) f (s : S),

recognize f (l1 ++ l2) s = recognize f l2 (recognize f l1 s).
Proof.
intros X S. induction l1; intros l2 f s; auto.
simpl. rewrite IHl1. auto.

Qed.

The recognize function takes a transition function f , a list of transitions l, and an initial state
s. It iterates through the list, and produces the final state of the machine after observing each
transition in the list. The transition function is just a family of relations between states, indexed by
each possible transition. Note that in this model, the state space may be infinite.

The lemma recognize app states that the list of transitions may be split at any point – and the
effect of recognizing their concatenation is the same as recognizing the second part starting with
an initial state given by the output (final state) of the first one.

Next, we build a simple example, modeling a “turnstile” machine.

Require Import Arith.
Require Import StateMachine.

Inductive tr := coin | push.

Inductive stA := open | closed.

Definition turnstileA : stA→ tr→ stA :=
fun s x⇒ match s,x with
| open,coin⇒ open
| closed,coin⇒ open
| open,push⇒ closed
| closed,push⇒ closed

end.

Eval simpl in recognize turnstileA [coin;push;push] closed.

Inductive stB : Type := bank : nat→ stB.

Definition turnstileB : stB→ tr→ stB :=
fun s x⇒ match s,x with
| bank n,coin⇒ bank (S n)
| bank ,push⇒ bank 0

end.

In this example, there are two possible transitions: the operator may put a “coin” into the
machine, or may “push” through the turnstile. There two states to keep track of: first, the turnstile
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gate may be “open” or “closed,” and we must also keep track of the number of coins that have been
put into the machine. Informally, the machine can collect any number of coins, but transitions
back to zero (perhaps dumping them into a storage box) when the operator pushes through. If
there are no coins in the machine, the gate will stay closed. Correctness for the machine is defined
as follows: there must exist no list of transitions such that the machine, starting from the closed
state with zero coins, can end up closed with a positive number of coins. Notice that the state space
we are reasoning about is effectively infinite, since there is no bound on the number of coins. Thus,
the proof necessarily relies on induction.

Lemma dist not exists : ∀ (X : Type) (P : X→ Prop),
(∀ x, ¬P x)→ ˜(∃ x, P x).

Proof.
unfold not. intros X P H1 H2.
inversion H2 as (x, Hx).
apply (H1 x). apply Hx.

Qed.

Theorem zero lt n : ∀ n,
0 ¡ n→ 0 6= n.

Proof.
intros n H. unfold lt in H.
inversion H; unfold not; intro Hf ; inversion Hf.

Qed.

Lemma one coin open : ∀ s,
recognize turnstileA [coin] s = open.

Proof.
intro s. destruct s; auto.

Qed.

Lemma coin open : ∀ l s,
recognize turnstileA (l++[coin]) s = open.

Proof.
intros l s. rewrite recognize app. rewrite one coin open. auto.

Qed.

Lemma one push bank0 : ∀ s,
recognize turnstileB [push] s = bank 0.

Proof.
induction s; auto.

Qed.

Lemma push bank0 : ∀ l s,
recognize turnstileB (l++[push]) s = bank 0.

Proof.
intros l s. rewrite recognize app. rewrite one push bank0. auto.

Qed.

Theorem turnstile safe :
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∀ n, n ¿ 0→
¬∃ l,
recognize turnstileA l closed = closed ∧
recognize turnstileB l (bank 0) = bank n.

Proof.
intros n Hn. apply zero lt n in Hn. unfold not in Hn.
apply dist not exists. apply rev ind; unfold not.
intro H. inversion H as (H1, H2).
inversion H2; auto.
intros x l IHl H. inversion H as (H1, H2). destruct x.
rewrite coin open in H1. inversion H1.
rewrite push bank0 in H2. inversion H2; auto.

Qed.

The correctness specification is quite complex, and yet the proof of correctness is actually
short (it could be made even shorter through use of more sophisticated tactics; here, we are trying
to illustrate the principles involved and so have left the proof verbose).

4.6 Termination

In Coq, to maintain consistency of the proof logic, it is required that programs be shown to ter-
minate. This implies that general recursion is not permitted, and thus the language is not Turing
complete. This limitation has been shown to be acceptable for many practical programs in practice,
although it does introduce some challenges. We have examined this problem as part of our work
on hybrid systems [6].
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